metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Rui Liu, Yi-Zhi Li, Zhong Zhang and Zhi-Lin Wang*

Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China

Correspondence e-mail: llyyjz@nju.edu.cn

Key indicators

Single-crystal X-ray study T = 298 K Mean σ (C–C) = 0.007 Å R factor = 0.055 wR factor = 0.134 Data-to-parameter ratio = 15.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[3,3',3"-(1,4,7-Triazacyclononane-1,4,7-triyl)tripropanamide]nickel(II) bis(perchlorate)

In the title compound, $[Ni(C_{15}H_{30}N_6O_3)](CIO_4)_2$, the Ni^{II} atom is coordinated by three N and three O atoms from the 3,3',3''-(1,4,7-triazacyclononane-1,4,7-triyl)tripropanamide (tcet) ligand in a pseudo-octahedral geometry. The $[Ni(tcet)]^{2+}$ complex cations are linked by N-H···O hydrogen bonds to form zigzag chains, which are further connected into a three-dimensional network by N-H···O hydrogen bonds with CIO_4^- anions.

Comment

Ligands with pendent amide groups are particularly interesting (Weyhermüller *et al.*, 1998) because they can form metal complexes in which the NH₂ groups can remain protonated and the CH₂CONH₂ groups coordinate to the metal atom through the carbonyl O atoms. This coordination behaviour is very similar to that of the CONH group in small peptides. We report here the structure of the title compound, [Ni(tcet)](ClO₄)₂ [tcet = 3,3',3''-(1,4,7-triazacyclononane-1,4,7-triyl)tripropanamide], (I), the ligand being a new derivative of H₃tacn having pendent arms (H₃tacn = 1,4,7-triazacyclononane).

In (I), the coordination geometry around the Ni atom is pseudo-octahedral (Fig. 1). The twist angle, which is defined as 0° for a regular trigonal prism and 60° for an octahedron (Schlager *et al.*, 1995), is 53.2 (2)°.

The complex cations are connected by N4–H4E···O3ⁱ hydrogen bonds [Table 1; symmetry code (i) $x, \frac{3}{2} - y, z - \frac{1}{2}$], forming zigzag chains along the *b* axis (Fig. 2). N–H···O hydrogen bonds between the complex and ClO₄⁻ anions link these chains into a three-dimensional network.

Experimental

 $\ensuremath{\mathbb{C}}$ 2006 International Union of Crystallography All rights reserved

 H_3 tacn (10 mmol, 1.3 g), prepared according to the literature procedure of Bushnell *et al.* (1998), and acrylamide (40 mmol, 3 g)

Received 5 April 2006 Accepted 12 April 2006

12942 measured reflections 4726 independent reflections 3802 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.041$ $\theta_{\rm max} = 26.0^{\circ}$

Figure 1

A view of the complex cation in (I), with displacement ellipsoids drawn at the 30% probability level. All H atoms have been omitted for clarity.

Figure 2

The hydrogen-bonded chain of the complex cation of (I), along the *b* axis. H atoms have been omitted except for those involved in the hydrogen bonding. Dashed lines indicate hydrogen bonds. [Symmetry code: (i) x, $\frac{3}{2} - y$, $z - \frac{1}{2}$.]

were dissolved in MeOH (30 ml), and the mixture reacted at 333 K for 12 h. The tcet ligand was obtained as a colourless solid by evaporating the solvent and this was then recrystallized from a solution in methanol–diethyl ether (2:3 ν/ν) (yield of tcet 2.6 g, 75.8%). Elemental analysis found: C 52.86, H 8.53, N 24.34%; calculated for C₁₅H₃₀N₆O₃: C 52.61, H 8.83, N 24.54%. ¹H NMR (500 Hz, CD₃CN, δ , p.p.m.): 2.8–2.9 (*m*, 12H, N–CH₂–CH₂–N), 2.26 (*t*, 6H, N–CH₂), 2.12 (*t*, 6H, CH₂–CONH₂).

To teet (0.3 mmol, 103 mg) in MeOH (30 ml) was added Ni(ClO₄)₂·6H₂O (0.4 mmol, 146 mg), and the reaction mixture was stirred at boiling point. A purple precipitate formed quickly. Crystals of (I) suitable for X-ray diffraction were obtained by slow diffusion of diethyl ether into an acetonitrile solution [yield of (I) 102 mg, 57.2%]. Elemental analysis found: C 30.06, H 5.04, N 13.63%; calculated for C₁₅H₃₀Cl₂N₆NiO₁₁: C 30.03, H 5.06, N 14.01%; ESMS (*m*/*z*): 200 (*L*+Ni²⁺), 501 (*L*+Ni²⁺+ClO₄⁻).

Crystal data

	a (
$[N_1(C_{15}H_{30}N_6O_3)](ClO_4)_2$	Z = 4
$M_r = 600.06$	$D_x = 1.653 \text{ Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 18.544 (2) Å	$\mu = 1.09 \text{ mm}^{-1}$
b = 12.5781 (14) Å	$T = 298 { m K}$
c = 10.7292 (12) Å	Block, purple
$\beta = 105.562 \ (2)^{\circ}$	$0.34 \times 0.33 \times 0.31 \text{ mm}$
$V = 2410.8 (5) \text{ Å}^3$	

Data collection

Bruker SMART APEX CCD area-
detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\rm min} = 0.70, T_{\rm max} = 0.72$

Refinement

 $\begin{array}{ll} \mbox{Refinement on } F^2 & w = 1/[\sigma^2(F_o^2) + (0.07P)^2 \\ R[F^2 > 2\sigma(F^2)] = 0.055 & + 1.9365P] \\ wR(F^2) = 0.134 & where \ P = (F_o^2 + 2F_c^2)/3 \\ S = 1.05 & (\Delta/\sigma)_{\rm max} < 0.001 \\ 4726 \ {\rm reflections} & \Delta\rho_{\rm max} = 0.28 \ {\rm e} \ {\rm \AA}^{-3} \\ 316 \ {\rm parameters} & \Delta\rho_{\rm min} = -0.40 \ {\rm e} \ {\rm \AA}^{-3} \\ \mbox{H-atom parameters constrained} \\ \end{array}$

Table 1

Selected geometric parameters (Å, °).

Ni1-O2	2.039 (3)	Ni1-N3	2.078 (3)
Ni1-O1	2.071 (3)	Ni1-N2	2.081 (3)
Ni1-N1	2.077 (3)	Ni1-O3	2.111 (3)
O2-Ni1-N1	96.54 (13)	O1-Ni1-N2	176.18 (13)
O1-Ni1-N1	91.04 (13)	N1-Ni1-O3	176.02 (12)
O2-Ni1-N3	176.62 (14)	N3-Ni1-O3	90.89 (12)
O1-Ni1-N3	93.56 (13)	N2-Ni1-O3	95.08 (12)
O2-Ni1-N2	91.63 (14)		

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N4-H4 E ···O3 ⁱ	0.89	2.55	3.405 (6)	160
$N4 - H4D \cdots O21^{ii}$	0.89	2.48	3.242 (5)	144
$N5-H5D\cdots O24^{iii}$	0.89	2.43	3.046 (5)	127
$N5-H5E\cdots O24$	0.89	2.28	3.170 (5)	173
$N5 - H5E \cdots O23$	0.89	2.59	3.270 (5)	134
N6−H6C···O14	0.89	2.44	3.100 (5)	131
$N6-H6D\cdotsO11^{iv}$	0.89	2.30	3.181 (5)	168

Symmetry codes: (i) $x, -y + \frac{3}{2}, z - \frac{1}{2}$; (ii) -x + 2, -y + 2, -z; (iii) $x, -y + \frac{3}{2}, z + \frac{1}{2}$; (iv) -x + 1, -y + 1, -z.

All H atoms were placed in calculated positions and treated as riding atoms, with C-H = 0.97 Å and N-H = 0.89 Å, and with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(N)$.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Bruker, 2000); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This project was supported by the Natural Science Foundation of China (grant No. 20475026).

References

- Bruker (2000). SMART, SAINT, SADABS and SHELXTL. Bruker AXS inc., Madison, Wisconsin, USA.
- Bushnell, G. W., Fortier, D. G. & McAuley, A. (1998). Inorg. Chem. 27, 2626– 2634.
- Schlager, O., Wieghardt, K., Grondey, H., Rufinska, A. & Nuber, B. (1995). *Inorg. Chem.* 34, 6440–6448.
- Weyhermüller, T., Weighardt, K. & Chaudhuri, P. (1998). J. Chem. Soc. Dalton Trans. pp. 99–110.